

Measuring Risk to Improve
Java Software Quality

Measuring Risk to Improve Java Software Quality

Agitar Technologies, Inc.

URL- http://www.agitar.com 41 Sharpe Drive Cranston, RI 02920

2

Introduction
The resources available to ensure the quality of a software project are nearly always limited. So it’s
important to know the potential for a certain method, class or project to possess quality problems in order
to prioritize testing, reengineering and bug fixing efforts. The AgitarOne Management Dashboard reports
a Risk Metric, which objectively measures the risk of software as a function of two critical factors:

 code complexity

 test coverage

With risk metric values available, the development team can then focus its efforts on the classes,
methods and projects where risk is highest. This approach results in the highest possible quality levels
while ensuring the best use of scarce development and testing resources.

Challenge of managing legacy code
Most software projects have a wide variation of software risk, in terms of the complexity and the test
coverage of their classes and methods. Additionally, the high risk areas may not be well known to
management. Those classes that have been modified since the last release or test cycle may be
particularly vulnerable, but especially so if they are of high risk relative to complexity and test coverage.
Modifying existing code of moderate or high complexity without thorough testing runs a higher risk of
introducing regressions.

The problem with many current development and maintenance efforts is that there is no easy way to
identify the risk of each area of the code. This lack of transparency in turn makes it difficult to prioritize
quality improvement efforts. Without a process to point out where risk is high, it’s hard to determine what
code needs work. Chances are that a considerable portion of the resources that are expended on quality
improvement are wasted on low-risk code while at the same time not nearly enough effort is expended on
high-risk code.

Measuring Risk to Improve Java Software Quality

Agitar Technologies, Inc.

URL- http://www.agitar.com 41 Sharpe Drive Cranston, RI 02920

3

Risk metric determines which areas of the code need work

Figure 1: Dashboard project summary

The AgitarOne Management Dashboard provides a series of metrics that enable executives, developers
and development managers to understand and track the quality status of Java software projects. It
calculates the complexity of each method using McCabe’s cyclomatic complexity algorithm, which
measures decisions and thereby also provides an indication of a minimum number of paths to test for
increased reliability. The more complex the structure of code, the harder it is to understand, the longer it
will take to produce, the more likely it is to have a defect, the harder it is to change, the more difficult it will
be to reuse and the harder it is to test.

An independent researcher who was originally skeptical about the value of this metric, Richard Sharpe,
performed a historical analysis of tens of thousands of source code files. For each file, he applied
cyclomatic complexity metrics and analyzed the defect rates. The results showed a near-linear correlation
between cyclomatic complexity and defect rates. For example, files having a cyclomatic complexity value
of 11 had the lowest probability of being fault-prone (28%) while files containing cyclomatic complexity
values of 74 and up had a 98% plus probability of being fault-prone.

The AgitarOne Management Dashboard also calculates test coverage by counting the lines, conditions,
and exit paths of a method that are tested and providing the percentage that are tested. The
Management Dashboard then calculates the method’s risk as the complexity of the method mitigated by
test coverage. The method risk calculation for a method m is:

Riskm=complexitym
2 x (1-coveragem/100)3 + complexitym

Measuring Risk to Improve Java Software Quality

Agitar Technologies, Inc.

URL- http://www.agitar.com 41 Sharpe Drive Cranston, RI 02920

4

The risk metric provides an estimate of the reliability of code. Code that is overly complex or insufficiently
tested is more prone to breaking at the slightest touch. The risk metric can be used to focus code
improvement and/or testing efforts.

Figure 2: Risk reporting in Dashboard

The AgitarOne Management Dashboard reports risk for methods, classes, developers, packages and
projects as shown in Figure 2. For example, when reporting class risk, it takes the risk above the
threshold for each method in the class and adds it together. It then multiplies this sum by a usage factor.
Methods that are not high risk do not contribute to the class risk. The Dashboard analyzes the code and
produces reports that list the number of classes, how complex the different classes and methods are,
what is the level of testing coverage for the different classes and methods, and what is the level of risk for
each class and method.

Testing goals can be defined and tracked for the project and for individual classes, and then summarized
for each developer and for the overall project. Summary status information is provided at the individual
project level or rolled up over several projects. Key metrics such as the overall code coverage, total
number of tests, percentage of classes and methods with direct tests and number of test failures are
plotted on trend charts for easy analysis. The Dashboard's e-mail notification delivers key metrics to
managers’ and developers’ inboxes.

Measuring Risk to Improve Java Software Quality

Agitar Technologies, Inc.

URL- http://www.agitar.com 41 Sharpe Drive Cranston, RI 02920

5

Improving the quality of your code
The AgitarOne Management Dashboard provides a targeted, measured and automated way to get a clear
overview of your developer testing effort. The Dashboard enables developers, development managers
and corporate managers to track quality status of software projects. Objective metrics help set priorities
and measure progress. Non-behavior changing refactoring patterns can be used to reduce code
complexity. Code complexity and risk analysis reports can be used to identify which classes would benefit
the most from additional coverage and more comprehensive testing.

The AgitarOne Management Dashboard provides a roadmap to continuously improve the quality of your
code. You might start by finding the highest risk class or method and take a look at why it is prone to
break. Is the problem primarily the complexity of the code or the lack of test coverage or a combination of
both? Look at why your tests do not cover problematic lines or branches. Is the code too complex or too
hard to observe? Either write more tests to increase coverage or employ non-behavior changing
refactoring patterns to make the code easier to test. Metrics targets can be set just below current
numbers so if code is added, tests fail, risk increases or test points decrease, the build will fail
immediately.

As developers incorporate objective metrics into their workflow, it will become possible to detect and fix
bugs sooner, deliver tests with each class and design better software. Developers can track risk metrics
over time to generate continual improvements in code quality. Over time, code coverage will approach
100%, the quality of tests will improve and the body of tests will be able to detect nearly every unit-level
bug. As the application changes and new features are added, tests can be kept synchronized with the
updated code. Software teams will be able to refine and expand the code base and be confident that
these changes will not degrade code quality.

Conclusion
The AgitarOne Management Dashboard provides a measurement of complexity and test coverage to
identify code that is likely to produce regression bugs that will not be caught by your current tests if it is
changed. The Dashboard enables teams to set priorities based on risk, establish targets for both the
team and individual developers, measure progress, correctly allocate resources and continuously
improve software quality.

For more information about AgitarOne, please visit us at www.agitar.com.

